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Abstract We studied the diel variation of in situ coral

temperature, irradiance and photosynthetic performance of

hemispherical colonies of Porites lobata and branching

colonies of Porites cylindrica during different bulk water

temperature and tidal scenarios on the shallow reef flat of

Heron Island, Great Barrier Reef, Australia. Our study

presents in situ evidence that coral tissue surface temper-

atures can exceed that of the surrounding water under

environmental conditions typically occurring during low

tide in shallow reef or lagoon environments. Such heating

may be a regular occurrence on shallow reef flats, triggered

by the combined effects of high irradiance and low water

flow characteristic of low Spring tides. At these times, solar

heating of corals coincides with times of maximum water

temperature and high irradiance, where the slow flow and

consequent thick boundary layers impede heat exchange

between corals and the surrounding water. Despite similar

light-absorbing properties, the heating effect was more

pronounced for the hemispherical P. lobata than for the

branching P. cylindrica. This is consistent with previous

laboratory experiments showing the evidence of interspe-

cific variation in coral thermal environment and may result

from morphologically influenced variation in convective

heat transfer and/or thermal properties of the skeleton.

Maximum coral surface warming did not coincide with

maximum irradiance, but with maximum water tempera-

ture, well into the low-tide period with extremely low

water flow in the partially drained reef flat, just prior to

flushing by the rising tide. The timing of low tide thus

influences the thermal exposure and photophysiological

performance of corals, and the timing of tidally driven

coral surface warming could potentially have different

physiological impacts in the morning or in the afternoon.

Introduction

Diurnal fluctuations in irradiance affect the photophysiol-

ogy of the endosymbiotic dinoflagellates (zooxanthellae) of

corals (Brown et al. 1999; Ralph et al. 1999; Jones and

Hoegh-Guldberg 2001; Winters et al. 2003; Levy et al.

2004; Hill and Ralph 2005; Smith and Birkeland 2007).

Supra-optimal light intensities at noon result in a loss of

photosynthetic efficiency (i.e. photoinhibition) mostly

through reversible photoprotective mechanisms rather than

long-term damage to the photosynthetic apparatus (Brown

et al. 1999; Hoegh-Guldberg and Jones 1999; Ralph et al.

1999; Gorbunov et al. 2001). Elevated temperatures are

thought to compromise the repair machinery of photosyn-

thesis (Takahashi et al. 2004), causing oxidative stress

(Lesser 1997), chronic damage to the zooxanthellae (Smith

et al. 2005) and, for example, a caspase-mediated apoptotic

cascade in the coral host (Tchernov et al. 2011). Thus, the

combination of intense irradiance and elevated temperature

is recognized as the primary cause of mass coral-bleaching

events (Iglesias-Prieto et al. 1992; Jones et al. 2000).

In shallow reef environments, elevated temperature and

high irradiance often co-occur (Coles 1997), where large
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diel increases in water temperature are caused by pro-

longed solar heating of the shallow water body and reef flat

during low Spring tides (Jones et al. 2000; Jimenez et al.

2008). There is increasing evidence for a pronounced diel

variation in bulk water temperature over shallow reefs,

which is exaggerated by mid-day low tides and periods of

low windspeed and water flow (McCabe et al. 2010; Put-

nam and Edmunds 2011). Furthermore, a detailed study of

the temperature dynamics in a single coral reef patch

revealed a complex and dynamic temperature pattern over

spatial scales \1 m (Gorospe and Karl 2011). Temperature

dynamics in single coral patches is thus due to a complex

interaction between microspatial variations in flow,

affecting boundary layers and heat exchange with benthic

interfaces. Unfortunately, in situ measurement of coral

temperature is very scarce, but a first data set showed that

low-tide, high-irradiance conditions can indeed cause

additional solar heating of coral surfaces in situ of up

to *0.6 �C (Jimenez et al. 2008).

The thermal sensitivity of the coral–algal symbiosis is

such that an excess in water temperature of just 1–2 �C

above long-term summer maxima can trigger bleaching

(Podesta and Glynn 2001), and differences of about 1 �C in

thermal exposure are known to affect the severity of the

bleaching response (Berkelmans and Willis 1999). There-

fore, additional solar heating of coral surfaces can poten-

tially affect the bleaching response to elevated seawater

temperatures (Fabricius 2006, Jimenez et al. 2008). A

better understanding of the spatial and temporal variability

in bleaching patterns may be achieved by a more accurate

description of the thermal exposure of coral tissue in situ,

rather than measurements in the surrounding water.

Jimenez et al. (2008, 2011) highlighted a link between

coral surface warming and tide regime and provided the first

evidence for differences in the thermal exposure of hemi-

spherical and branching corals. These observations may help

explain the large differences in bleaching susceptibility

between coral taxa with different growth forms (Marshall

and Baird 2000; Loya et al. 2001). A prerequisite for testing

such relationships between bleaching susceptibility and

coral morphology is a better understanding of the in situ

thermal exposure of corals. Jimenez et al. (2008) showed a

single preliminary data set (without replication) on the in situ

temperature dynamics in the hemispherical coral Cyphas-

trea serailia and the branching coral Porites cylindrica. No

detailed data on tidal variation or longer replicated time

series were presented. In the present study, we present a

more comprehensive (and replicated) data set on the in situ

temperature dynamics under different tidal and irradiance

regimes in the hemispherical coral Porites lobata and the

branching coral P. cylindrica. The study thus expands on the

still very few fine-scale data on in situ coral temperature

dynamics and investigates possible links between tidal and

diurnal dynamics of the temperature and photophysiology of

branching and hemispherical shallow water corals.

Materials and methods

Site and sampling periods

Coral surface temperature dynamics was monitored on the

reef flat adjacent to Heron Island Research Station

(151�550E, 23�260S) during three periods, representing two

contrasting tidal situations. During the first two sampling

periods (14–17 January 2007 and 21–24 November 2007),

low Spring tides drained the reef flat for approximately 5 h

during the daylight period, creating shallow pools

*20–50 cm deep between 10:00 and 16:00 h. In the third

experiment (28–30 November 2007), high tide occurred

around noon and water depth ranged from 2 to 3 m between

10:00 and 16:00 h. Tidal heights for Heron Island were

provided by the Bureau of Meteorology (Australia) for the

January 2007 sampling period (30-min intervals) and

the Environment Protection Agency (Australia) for the

November 2007 sampling period (10-min intervals).

Coral specimens

In the January and November 2007 experiments, hemi-

spherical colonies of P. lobata (*150 mm diameter) and

branching colonies of P. cylindrica (branch thick-

ness *10 mm) were collected from the shallow reef flat

(n = 4 and n = 5 in January and November, respectively).

A 2-mm-wide hole for mounting of thermistor probes (see

below) was drilled vertically through each of the coral

skeletons with the corals in seawater, and the colonies were

left to recover for at least 24 h in continuously flowing

aerated seawater (25 �C—ambient lagoon temperature)

before redeployment on the reef flat.

Coral optical properties

The light-absorbing capacity of the P. lobata and P. cyl-

indrica specimens was assessed as the absorptance (A,

fraction of light absorbed by the tissue) in the spectral

range 400–750 nm. This was estimated from spectral

reflectance measurements taken using a fibre optic spec-

trometer (USB2000, Ocean Optics, USA) and a deuterium–

halogen light source (DH-2000-BAL, Ocean Optics, USA).

Downwelling quantum irradiance at the depth of corals

was measured as PAR (photosynthetically active radiation,

400–700 nm) in units of lmol photons m-2 s-1 with a

submersible downwelling irradiance data logger (Odyssey

Dataflow Systems Pty Ltd, New Zealand) using a 5-min

integration time.
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Coral temperature measurements

The temperature of coral skeletons and the surrounding

water was measured every 5 min with custom-made mini-

ature thermistors (tip diameter 1.5 mm, accuracy ± 0.1 �C)

connected to a battery-driven submersible data logger

(Lothlorien Pty Ltd, Australia) and calibrated against a type

T thermocouple in a well-mixed 10-L thermostated water

bath (Jimenez et al. 2008). Thermistor accuracy was tested

in a slowly varying temperature-controlled bath, and read-

ings proved consistent to within 0.1 �C over a temperature

range of 22–35 �C. The thermistors were fed through the

holes into the skeleton, in order to ensure that the sensor tips

were in thermal contact with the skeleton and level with

the sun-exposed surface of the coral colonies (Fig. 1). For

P. cylindrica, horizontally oriented branches were chosen.

In situ water temperature was monitored by a set of

thermistors placed in the water column 10 cm away from

the coral surfaces.

Photosynthetic capacity of corals

During the November 2007 experiments (daytime low and

high tide), variable chlorophyll fluorescence measurements

of the photochemical efficiency of the zooxanthellae in the

experimental corals were taken in situ using an underwater,

pulse amplitude–modulated fluorometer (Diving-PAM,

Walz, Germany) (Ralph et al. 1999). The effective quan-

tum yield of photochemistry in PSII in the light-adapted

state (UPSII) was assessed as DF/Fm

0
= (Fm

0
- F)/Fm

0
,

where Fm

0
is the maximum fluorescence yield (measured

after the application of a 0.8-s saturating light pulse

of [4,500 lmol photons m-2 s-1) and F is the steady-state

fluorescence yield (measured under non-actinic weak

0.3 ls pulses from a blue light–emitting diode). DF/Fm

0
was

measured daily around noon (between 12:00 and 15:00),

and at night-time (between 22:00 and 04:00), when low

tide permitted easy access to the site.

Statistical analysis

Repeated-measures analysis of variance (rm-ANOVA) was

used to assess changes in the daytime and night-time quan-

tum yields of PSII over the duration of the November

experiment. The time of significant changes was identified

using Tukey’s post hoc comparisons. Two-tailed Student’s

t tests were used to compare the values of absorptivity (a),

surface warming (DT) at 10:00, 12:00, 14:00 and 16:00 h

and PSII effective quantum yields (DF/Fm

0
) between the

P. lobata and P. cylindrica specimens. All data were tested

for normality and homogeneity of variance prior to

testing, using Kolmogorov–Smirnov and Levene’s tests,

respectively.

Results

Noon-low-tide experiments

Water temperature dynamics

The seawater temperature during the sampling periods

14–17 January 2007 and 21–24 November 2007 exhibited

large diel fluctuations (Fig. 2), typical of low Spring tides

on the shallow reef flat at Heron Island (Potts and Swart

1984; Jones et al. 2000; Jimenez et al. 2008). On each of

the four sampling days of 14–17 January 2007, oceanic

water levels dropped to 1.1, 1.0, 0.8 and 0.7 m at 12:00,

Fig. 1 Experimental set-up for in situ coral temperature measurements. a Submersible temperature logging equipment (photograph: I. Jimenez).

b Close-up of a P. cylindrica colony with inserted temperature sensor (photograph: G. Holmes)
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13:00, 13:30 and 14:00 h, respectively (Fig. 2a). Low tide

during the November 2007 experiment (21–24 November)

occurred at similar times: 11:30, 12:30, 13:20 and 14:30 h,

but dropped lower to 0.6, 0.5, 0.4 and 0.3 m, respectively

(Fig. 2b). The greater tidal amplitude of the November

experiment caused a longer residence time of the shallow

water body on the reef flat, and this was mirrored by a

greater daily seawater temperature variation (DTw =

5.3–7.0 �C) compared to January (DTw = 3.9–5.7 �C)

(Fig. 2b, c). Night-time water temperatures were 24–25 �C

on 14–17 January, while daytime temperatures increased to

30.7 �C on 14 January and were between 28.0 and 29.5 �C

on 15–17 January. In November 2007, water temperatures

were 22–24 �C at night and reached 29.3–30.3 �C during

the day on 21–23 November.

Maximal daily temperatures were reached at approxi-

mately 14:30, 15:30, 15:20 and 14:30 h on each of the

4 days on 14–17 January and at 13:30, 14:50, 15:40 and

16:20 h on 21–24 November, respectively. On each

sampling day of the January and November experiments, a

sharp decline in water temperature coincided with the

flushing of oceanic water into the lagoon, as water levels

rose above the reef crest (Potts and Swart 1984, McCabe

et al. 2010). This occurred at approximately 17:00, 16:20,

16:00 and 15:50 on the 14–17 January and at 14:30, 15:15,

15:40 and 16:20 on the 21–24 November, respectively.

Coral surface warming

The surface temperature of corals increased above that of the

surrounding water (Fig. 2e–h). On the 14–17 January, the

surface temperature of the hemispherical P. lobata speci-

mens increased above that of the water by ?0.3–0.4 �C

between 11:00 and 15:30 h, reaching ?0.6 �C on the 15

January at 14:00 h (Fig. 2e). By contrast, the surface

warming of the branching P. cylindrica reached only

?0.2–0.3 �C during the same period (Fig. 2g). A similar

pattern occurred during the November experiment, whereby

A B

D

F

HG

E

C

Fig. 2 In situ irradiance and temperature dynamics of hemispherical

P. lobata and branching P. cylindrica colonies on the Heron Island

reef flat during 4-day periods of noon low Spring tide in January and

November 2007. a, b Tidal height (black line, right y axis) and in situ

underwater downwelling irradiance (PAR, 400–700 nm) (grey curve,

left y axis) measured at the depth of corals. c, d Ambient seawater

temperature. e–h The relative temperature difference between the

coral surface and the surrounding seawater for P. lobata (e, f) and

P. cylindrica (g, h) specimens (Mean ± SE, n = 4 and 5 in January

and November, respectively)
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the temperature of the hemispherical P. lobata increased by

?0.3–0.8 �C above that of the surrounding water (Fig. 2f),

while temperature of the branched P. cylindrica was only by

?0.2–0.3 �C warmer than that of the surrounding seawater

(Fig. 2g). In the January experiment, significant differences

in the surface warming of P. lobata and P. cylindrica were

detected at 14:00 h on the 15th (0.54 ± 0.09 �C and

0.23 ± 0.04 �C, p = 0.02) and the 16th (0.33 ± 0.04 �C

and 0.18 ± 0.04 �C, p = 0.045) and at 16:00 h on the 16th

(0.15 ± 0.02 �C and 0.08 ± 0.02 �C, p = 0.02) and the

17th (0.26 ± 0.02 �C and 0.16 ± 0.02 �C, p = 0.01). In the

November experiment, the surface warming of P. lobata was

significantly greater than that of P. cylindrica at 16:00 h on

the 22nd (0.25 ± 0.04 �C and 0.03 ± 0.01 �C, p \ 0.01)

and the 23rd (0.15 ± 0.03 �C and 0.04 ± 0.02 �C,

p \ 0.05).

In the January 2007 experiment, the maximal coral sur-

face warming was reached simultaneously with the daily

maximum in water temperature (Fig. 2c, e, g). This occurred

at the end of the low-tide period between 14:30 and 15:30 h

and thus later than the noon maximum in irradiance. In

November, maximal water temperatures were also mirrored

by a maximum in coral surface warming, but for the hemi-

spherical P. lobata specimens, this was followed by a spike

caused by a sharp decline in water temperature and a delayed

response in coral surface temperature (Fig. 3).

Coral absorptance

No differences were detected in the light-absorbing effi-

ciencies of the P. lobata and P. cylindrica specimens in the

January experiment (a = 0.49 ± 0.04, p [ 0.05). How-

ever, in the November experiment, the absorptance of the

P. lobata specimens (a = 0.67 ± 0.06) was significantly

greater than that of the P. cylindrica specimens (a =

0.45 ± 0.04, p = 0.02).

Noon-high-tide experiment

Water temperatures

In contrast with the prolonged light exposure of the reef flat

during daytime low-tide experiment, the noon-high-tide

experiment (28–30 November 2007, Fig. 4) showed

smaller seawater temperature variations (DTw * 4 �C)

and maxima (27 �C on the 29 November). The temperature

of the corals differed little from that of the water, at the

most by ?0.15 �C on 29 November for the P. lobata

specimens (Fig. 4c, d).

Variable Chlorophyll a fluorescence measurements

Throughout the November sampling period (noon low and

noon high tide, Fig. 5), both coral species exhibited large

diurnal fluctuations in the effective quantum yield of PSII,

consistent with the well-known depression of photosyn-

thetic activity under mid-day maximum irradiance (Brown

et al. 1999; Ralph et al. 1999). The noon value of DF/Fm

0
for

both coral species was significantly lower on 21 November

(0.15 ± 0.04) as compared to 30 November (0.33 ± 0.05)

(rm-ANOVA, p \ 0.05), indicating greater photic stress at

noon low tide compared to noon high tide (Fig. 5).

Fig. 3 In situ temperature

dynamics of P. lobata on 22

November 2007 (Mean ± SE,

n = 5) quantified as the relative

temperature difference between

the coral and the ambient

seawater. Inset: temperature of

the ambient seawater (solid line)

and corals (dashed line).

Maxima in coral surface

warming are indicated by

arrows: a 14:30 h, b 15:30.

The ‘‘sun’’ symbol indicates

solar noon
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At noon on 26 November, DF/Fm

0
of P. cylindrica

(0.27 ± 0.05) was significantly higher than that of P. lo-

bata (0.15 ± 0.02) (t test, p = 0.01). No changes were

detected in the night-time dark-adapted maximum quantum

yields (rm-ANOVA, p [ 0.05), suggesting that no chronic

photoinhibition occurred on those days.

Discussion

Coral thermal dynamics

Our measurements of bulk water temperature in relation to

tidal shifts and daily irradiance patterns largely followed

the same trends reported in a recent detailed study of water

temperature and flow of a shallow reef flat (McCabe et al.

2010), showing pronounced water heating at daytime low

tide and abrupt changes in water temperature as, for

example, the reef flat was flooded during incoming tides

during daytime. A discussion of mechanisms affecting such

larger-scale spatio-temporal variations on coral reefs is,

however, outside the scope of the present paper, and here,

we mainly focus on the temperature dynamics and physi-

ological responses of corals.

The temperature of corals increased above that of the

surrounding water during both sampling periods of noon

low tide (14–17 January and 21–24 November 2007,

Fig. 2), but remained within less than *0.2 �C of water

A

B

C

D

Fig. 4 In situ irradiance and

temperature dynamics of

hemispherical P. lobata and

branching P. cylindrica colonies

on the Heron Island reef flat

during a 4-day period of noon

high tide in November 2007.

a In situ downwelling quantum

irradiance (PAR, 400–700 nm)

measured at the depth of corals

(grey curve, left y axis) and tidal

height (black line, right y axis)

at Heron Island. b Ambient

seawater temperature. c, d The

relative temperature difference

between coral surface and water

for the P. lobata (c) and

P. cylindrica (d) specimens

(Mean ± SE, n = 5)
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temperature during the noon-high-tide sampling period

(28–30 November 2007, Fig. 4). This is consistent with

preliminary data shown in Jimenez et al. (2008) and indi-

cates that low Spring tides in the shallow reef flat at Heron

Island provide conditions of low flow and high irradiance

conducive to recurring solar heating of shallow water

corals. The present study, together with Jimenez et al.

(2008), has thus far documented three periods of daytime

low Spring tide, during which coral surface temperature

increased up to ?0.8 �C above that of the water, suggesting

this may not be a rare occurrence restricted to unusual

weather conditions.

Intermittent ponding of shallow water bodies, causing a

reduction in water circulation combined with elevated

irradiance and seawater temperature, has been documented

for reef systems in American Samoa (Smith and Birkeland

2007), Japan (Kraines et al. 1998), French Polynesia

(Putnam and Edmunds 2011) and the Great Barrier Reef

including Heron Island (Counihan et al. 2001; Jimenez

et al. 2008), One Tree Island (Ludington 1979) and Lady

Elliot Island (McCabe et al. 2010). Thus, shallow water

corals may be regularly exposed to higher temperature than

previously thought. This has implications for our under-

standing of the history of thermal exposure during both

bleaching and non-bleaching periods. In particular, through

acclimatization or adaptation, exposure to temperature

extremes may influence the thermal tolerance of corals

(Jokiel and Coles 1990; Marshall and Baird 2000; Coles

and Brown 2003).

Coral heating during low-tide, high-irradiance scenarios

may not occur to the same extent and as frequently as in

reef habitats, where water flow is predominantly driven by

wind rather than tidal currents (e.g., Genovese and Witman

2004). In these cases, low tide and high irradiance may

coincide with daily maxima in flow velocity, which could

alleviate coral surface warming as flow velocity is an

important parameter affecting coral heating under high

irradiance (Jimenez et al. 2011).

Further in situ work is required to assess the exact range

of flow and irradiance under which the temperature of

corals is increased, and the magnitude of this effect across

coral taxa, morphologies and pigmentations. This is not an

easy task as, for example, difficulties in underwater mea-

surements of surface temperatures pertain to the high

thermal conductivity and heat capacity of water. Imperfect

contact of the thermosensor with tissue, for example, due to

a small water pockets between tissue and the relatively

large thermocouple may thus lead to a mixed temperature

signal and a lower spatial resolution. It is therefore possible

that the sensors deployed in this study underestimated the

temperature of corals, and this may be improved through

finer-scale measurements using, for example, temperature

microsensors in situ together with recently developed

diver-operated underwater instrumentation for microsensor

measurements (Weber et al. 2007, Hansen et al. 2011;

Wangpraseurt et al. 2012).

Interspecific differences in coral warming

The hemispherical P. lobata specimens experienced a

greater surface warming, and therefore a higher in situ

temperature, than the branching P. cylindrica. This agrees

A

B

Fig. 5 Plots of a tidal height

(black line, right y axis) and in

situ underwater downwelling

irradiance (PAR, 400–700 nm)

(grey line, left y axis) during the

noon-low- and noon-high-tide

sampling periods (November

2007) and b effective quantum

yield of PSII for P. lobata and

P. cylindrica
(Mean ± SE, n = 5)
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with results from Jimenez et al. (2008) showing that

branching corals had a smaller surface warming than hemi-

spherical corals. In the January 2007 experiment, this dif-

ference occurred despite similar light-absorbing efficiencies,

as estimated from our reflectance measurement. This indi-

cates differences between hemispherical and branched cor-

als in how their heat budget is affected by the skeleton, and/or

convective heat loss to the surrounding water; these pro-

cesses and the effects of coral morphology remain to be

explored in more detail (see e.g. Jimenez et al. 2011).

Furthermore, the November 2007 experiment indicated

that the thermal dynamics of hemispherical corals may in

some instances be delayed relative to variations in the

water temperature. On November 22, the lag between the

water and coral temperature curves was about 5 min. The

small hemispherical corals used in Jimenez et al. (2008)

(approximately 5 cm in diameter) had response times of

approximately 1 min, and based on predictions from the

theoretical thermal model in that paper, this should

increase proportionally to the coral diameter. The hemi-

spherical P. lobata specimens in the present study wer-

e *15 cm in diameter, and according to similar theoretical

calculations, they should exhibit a thermal response time

of *3 min. This value is close to the observed response,

thus further indicating that coral morphology and size

influence the thermal dynamics of coral tissue.

It should be noted that because the sharp increase in

surface warming coincided with a decrease in water tem-

perature, this did not increase the coral temperature, but

merely slowed the cooling curve by a few minutes (Fig. 3).

Furthermore, this was observed only in the November

experiment (Fig. 2e, g), and not in January (Fig. 2f, h),

where water temperature had a slower rate of cooling

(Fig. 2c). Thus, thermal buffering by the skeleton may

influence the surface temperature of hemispherical corals,

but only occasionally and for a few minutes. It might,

however, prove interesting to investigate the potential

buffering effect of much larger (metrewide) colonies of

massive corals, which often are very resilient to bleaching.

Another, yet unexplored, temperature buffering mecha-

nism may be linked to the thermal properties of coral

mucus. To our knowledge, the thermal properties of coral

mucus have not been investigated. However, studies of

mucoid exopolymers in biofilm communities indicate that

they have a thermal conductivity rather similar to water

(Characklis 1981), and if coral mucus exhibits similar

thermal properties, its role in buffering corals against

temperature variations may be limited.

Physiological implications

The mid-day depression in effective quantum yield of PSII

(Fig. 5) was associated with active down-regulation as a

photoprotective mechanism, as well as possible photoin-

hibitory damage under intense noon irradiance (Ralph et al.

1999; Gorbunov et al. 2001; Winters et al. 2003; Levy et al.

2004). Exposure to excessive temperature can exacerbate

photoinhibition and impair photosynthesis of the zooxan-

thellae (Jones et al. 1998; Hill et al. 2004; Takahashi et al.

2004). Thus, the additional heating of corals during low

tide may influence the physiological impacts of concurring

high irradiance in terms of, for example, higher excitation

pressure (Jones et al. 1998; Warner et al. 1999) and pro-

duction of reactive oxygen species (Lesser and Farrell

2004; Franklin et al. 2004).

Our study confirms the previous observation that max-

imum coral surface warming did not coincide with maxi-

mum irradiance, but with maximum water temperature,

well into the low-tide period (Fig. 2, and Jimenez et al.

2008). This possibly coincided with extremely low water

flow in the partially drained reef flat, prior to flushing by

the rising tide (Ludington 1979; Kraines et al. 1998,

McCabe et al. 2010). The timing of low tide thus influences

the thermal exposure of corals, and this may have impli-

cations for the diel variation in photophysiological per-

formance of corals. The effective quantum yield of PSII in

shallow water corals is often lower in the afternoon com-

pared to morning values (Winters et al. 2003; Levy et al.

2004), indicating an afternoon loss in photosynthetic

capacity due to photoinhibition (Winters et al. 2003). Thus,

the timing of tidally driven coral surface warming could

potentially have different physiological impacts in the

morning or in the afternoon.

There were no significant differences in the effective

quantum yield of PSII between P. lobata and P. cylindrica

during the noon-low-tide sampling period, when the tissues

of P. lobata were exposed to additional surface warming

(Fig. 5). This indicates that the zooxanthellae in P. lobata

were not adversely affected by exposure to temperatures

higher than in P. cylindrica. This is not surprising, as

exposure temperatures remained lower than the critical

bleaching threshold of 32 �C. The DF/Fm

0
of P. lobata was

reduced as compared to P. cylindrica on the 26 January

2007, when daytime high tide reduced the intensity of noon

irradiance. This may arise from numerous other biotic and

abiotic factors not investigated in this study, including the

prehistory of temperature and light exposure, interspecific

differences in the production of heat-shock proteins, sym-

biont photophysiology (Warner et al. 1996; Hill and Ralph

2005; Ulstrup et al. 2006) and mass transfer (Finelli et al.

2006, 2007). However, considering the differences in

thermal exposure caused by additional solar heating of P.

lobata, the physiological impacts of small intermittent

increases in temperature should be further investigated, in

particular when water temperatures approach bleaching

conditions.
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Conclusion

This study presents first detailed in situ evidence that coral

tissue surface temperatures can exceed that of the sur-

rounding water under environmental conditions typically

occurring during low tide in shallow reef or lagoon envi-

ronments. Such heating may be a regular occurrence on

shallow reef flats, triggered by the combined effects of high

irradiance and low water flow, for example, characteristic

of low Spring tides. At these times, solar heating of corals

coincides with times of maximum water temperature and

high irradiance, and the slow flow and consequent thick

boundary layers impede gas and heat exchange between

corals and the surrounding water, thus promoting coral

stress and photoinhibition of the zooxanthellae. The

potential implications of such excess temperature stress on

coral bleaching await further investigation. Despite similar

light-absorbing properties for P. lobata and P. cylindrica,

the temperature effect was more pronounced for the

hemispherical P. lobata than for the branching P. cylind-

rica. This is consistent with previous evidence of inter-

specific variation in coral thermal environment (Jimenez

et al. 2008) and may result from variation in convective

heat transfer and/or thermal properties influenced by the

coral morphology and skeleton matrix (Jimenez et al.

2011).
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Jimenez IM, Kühl M, Larkum AWD, Ralph PJ (2008) Heat budget

and thermal microenvironment of shallow-water corals: do

massive corals get warmer than branching corals? Limnol

Oceanogr 53:1548–1561
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